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Abstract. We demonstrate that all king antiferromagnets with arbitrary many-neigh- 
boured interaction and in the maximum critical field, have highly degenerate ground states 
accompanied with non-zero residual entropies. The residual entropies vanish when the 
range of interaction tends to infinity. The proof is realised by an explicit calculation in 
the case of a one-dimensional many-neighboured Ising antiferromagnet, and by establish- 
ing bounds for the residual entropy in the case of an Ising system situated on a lattice 
with arbitrary number of dimensions. We also show that the established bounds may 
serve as estimates of frequently unknown actual values of the residual entropy. 

1. Introduction 

The ground states of the antiferromagnetic Ising systems in an external magnetic field 
have been studied by many authors. Brooks and Domb (1951) noted that the square 
Ising model with the antiferromagnetic nearest-neighbour (NN) coupling J in the 
critical field H ,  = 4 J  should have a non-zero entropy at the absolute zero temperature. 
They estimated that, at H = H, and T = 0, the model entropy retains more than 50% 
of its maximum value NkB In 2, where N is the number of spins and kB is the Boltzmann 
constant. The residual entropy results from the competition between parallel and 
antiparallel ordering of spins, caused by the external field and exchange interaction, 
respectively. In the pioneer review of the theory of cooperative phenomena, Domb 
(1960) pointed out that the Ising chain with the antiferromagnetic NN coupling J, in 
the critical field H, = 2J, has also a residual entropy. From an exact expression for 
the free energy, D o g b  (1960) found that the entropy per spin in the limit T+O is 
equal to k g  ln[(l+./5)/2], for H,  = 2J. On the other hand, Bonner and Fisher (1962) 
observed that the ground state degeneracy of the Ising chain can be expressed as a 
term of the Fibonacci sequence, whose Nth  term, for large N, can be represented by 
[(l +d5)/2IN (see also JariC and MilogeviC 1974). Subsequently, there have 
appeared many papers (see, e.g., Bader and Schilling 1981, and references quoted 
therein), which established ground state phase diagrams for the one-, two- and 
three-dimensional Ising models with arbitrary first-, second- and third-neighbour 
interactions. Thereby they also provide critical fields for the Ising models with three 
successive antiferromagnetic interactions. However, none of these papers furnish an 
answer to the question about possible values of the corresponding residual entropies. 

In the present paper we study the Ising systems with arbitrary antiferromagnetic 
interactions of range k. Such systems may have many critical fields, whose existence 
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and order depend on the lattice topology and characteristics of the set 
{ J 1 ,  J1, . . , , J,, . , . , Jk}, where Jj is the jth-neighbour interaction. However, there always 
exists a maximum critical field, such that in a higher field all spins are aligned in the 
field direction, whereas in a lower field some spins are flipped in the opposite direction. 
We show that this threshold field is accompanied with a finite residual entropy, 
provided that the antiferromagnetic interaction is of a finite range. In § 2 we calculate 
exactly the ground state degeneracy of an Ising chain, with arbitrary antiferromagnetic 
interaction of range k, and in the presence of the maximum critical field. From the 
obtained results, it follows that the corresponding residual entropy vanishes when 
k + CO. Although in the case of two- and three-dimensional Ising antiferromagnets 
one can hardly calculate exact values of the residual entropy, we establish in § 3 its 
lower and upper bound. These bounds confirm that there is no residual entropy when 
the interaction range tends to infinity. Furthermore, the established bounds provide 
limits for approximate calculations of the residual entropy. Thus, for instance, it follows 
that the residual entropy of the N N  square Ising antiferromagnet cannot be lower 
than 51.7% of the entropy maximum, in agreement with the classic result of Brooks 
and Domb (1951). In § 4 we give further numerical analysis of the obtained results, 
together with an overall discussion and pertinent conclusions. 

2. One-dimensional antiferromagnets 

We start our discussion with a general Ising model of an antiferromagnet 

k N 

%'= C Ji 1 S,Sn-H 1 S,, 
1 = 1  ( m n ) ,  n = l  

where Jj is the jth-neighbour antiferromagnetic interaction (Jj > 0), Tmn)i stipulates 
that the summation is restricted over those pairs of lattice sites which are the jth 
neighbours, and S ,  is the conventional Ising-spin variable ( S ,  = il). The applied 
field is positive (H > 0), and it defines the positive (upward) direction of spins. 

In order to study ground states of a system described by the Hamiltonian (1) we 
introduce the following variables: n (4) number of spins turned down, and n j ( - )  number 
of negative terms in the sum restricted over the jth neighbours, for a given configuration 
of spins. Thereby, assuming periodic boundary conditions, the Hamiltonian (1) can 
be written in the form 

k 

]=1 
X = [ z ,N/2  - 2 n j ( - ) V j  - H [ N  - 2n (J)], 

or 

with 

X = const. + Y1+ Yz, ( 3 )  

and 
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where ti is the number of jth neighbours per site of a given lattice. Henceforth we 
adopt n ( 4 )  as a basic variable, which may vary from zero to N .  Of course, each nj ( - )  
is a function of both n ( 4 )  and arrangement of spins turned down. But, as we are 
interested in the minimum values of 2, we will be concerned only with those arrange- 
ments of spins that give the largest possible values of nj ( - ) ,  yielding minimal values 
of Yl in (3). 

The exchange interaction of a particular spin turned down is effective within a 
region that contains Z j = ,  zi lattice sites. If this region, for every spin turned down, 
is filled up by spins turned up, all quantities n i ( - )  will have their maximum values 

k 

j = l , 2 , .  . ., k. 
These equations will be satisfied providing that 

where r is characteristic of a given lattice. The ratio N/r  represents the maximum 
possible number of spins turned down distributed on the lattice so that no two of 
them interact, that is to say r is related to the smallest distance between two non- 
interacting spins in the lattice. Thus, in the case of a one-dimensional lattice r = k + 1 
for arbitrary k, whereas in the case of the two-dimensional square lattice r = 2 , 4 , 6 , 9  
for k = 1 ,2 ,3 ,4 ,  respectively. Similarly, in the case of the simple cubiclattice r = 2 , 4 , 8  
for the three successive ranges of interaction k = 1 ,2 ,3 .  

Since in the interval (7), all n j ( - )  have their maximum values, the function Y1 has 
the largest decrement per spin turned down 

k 
-AY1=2 tjJi. 

j = l  

This decrement of the function Y1 can be compensated by an increment of the function 
Y2 if 

k 
H = 1 zjJp (9) 

j = l  

Therefore, in an external magnetic field equal to (9), the Hamiltonian (3) will have 
the constant value for all n ( J )  in the interval (7). This value of 2 is then the ground 
state energy, as for n ( J )  outside the interval (7) the increment of Y2 is larger than 
the decrement of Y1, and consequently 2 becomes larger. Similarly, one can deduce 
that the magnetic field (9) is the maximum critical field (Kanamori 1966). Indeed, 
for H larger than (9) the increment of Y2 is larger than the decrement of Y1,  and 
the Hamiltonian would increase if the spins started to turn down. On the other hand, 
if H is smaller than (9) the function Y1 decreases faster than Y2 increases, and the 
ground state would be outside the interval (7), where Y1 should acquire a smaller 
decrement. 

In the case of a one-dimensional Ising chain equations (6) become uniform 

ni(-> = 2n (J.1, j = l , 2 , .  . ., k. (10) 

These new equations are satisfied if every spin turned down is followed by at least k 
spins turned up. Such a configuration of spins is possible providing that 
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Therefore, in the critical field 
k 

j = 1  
H = 2 J,, 112) 

the ground state is highly degenerate. The corresponding degeneracy is a sum of 
degeneracy elements, each one being the number of ways in which a group of n ( J j  
spins turned down can break the remaining group of spins aligned up, so that every 
spin turned down is followed by at least k spins turned up. This number is the binomial 
coefficient formed of the numbers N - k n ( 4 )  and n ( J ) .  Thus the ground state 
degeneracy is 

where [ N / ( k  + l ) ]  is the integral part of N / ( k  + 1 ) .  Knowing P we can calculate the 
concomitant dimensionless entropy in the thermodynamic limit 

It suffices to find the largest term in the sum ( 1 3 ) .  This could be the binomial coefficient 
with n (J) that follows from 2n (J) = N - kn (J). However, since N - kn (J) is a decreas- 
ing function of n (J), it should be a binomial coefficient with n ( l )  less than ( N  - kn (J))/2. 
For such n (J) the inequality 

should turn into the opposite inequality. Hence, if we denote the ratio of the correct 
n (J) and N by x ,  the latter should be the smallest positive root of the equation 

x ( l - k X ) k = ( l - k x  - x ) ~ + ' ,  (16) 

which follows from (15) for very large N .  When we know the solution of (16) ,  we 
obtain the entropy 

N - k x N  
U =In lim 

{AI+,( xN ) 1 

or, by using equation (16) ,  

Therefore, we have obtained an exact formula for the residual entropy of the 
antiferromagnetic Ising chain, with arbitrary many-neighboured interaction, in the 
maximum critical field. When the range of the interaction tends to infinity, it follows 
from (18) that the residual entropy vanishes. In the special case k = 0, i.e. when there 
is no interaction between spins, equation (16)  and formula (18)  give the expected 
resul t_a=ln2.  For k =1  one can find that the smaller solution of (16) ,  x = 
(5-45)/10, gives u =ln{(l  +J5)/2}, in agreement with the result of Domb (1960). 
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3. Bounds of the residual entropy 

In the case of an Ising antiferromagnet situated on a lattice with dimension d > 1, 
one can hardly calculate exact values of the residual entropy. However, we shall 
demonstrate that its lower and upper bound can be found. The idea springs from the 
conditions (6). They are satisfied if every spin turned down succeeds in forbidding 
other spins turned down to occupy any of its z j  neighbouring sites. If n ( & )  = 1 
then the next spin flipped down finds p = zj + 1 forbidden sites in the lattice. This 
means that the number of forbidden sites per spin turned down cannot be larger than 
p .  On the other hand, the same number, which we will hereafter denote by f ,  cannot 
be smaller than r, where r is defined by (7). In fact, when n(1) = N / r  all sites in the 
lattice are forbidden, and thus the minimum off is r. Shortly, when f = p the forbidden 
zones that surround the spins turned down do not overlap, whereas for f = r there is 
the largest possible overlapping between the zones. As we are dealing with the 
isotropic exchange interactions, it is appropriate to term these zones the forbidden 
spheres. 

Knowing the two extreme values of f ( p  and r )  one can calculate the lower and 
upper bound of the residual entropy. Let n ( 1 )  be a number from the interval (7). If 
every spin turned down forbids exactly p lattice sites to be occupied by any other 
spin turned down, then the number of possible configurations, for fixed n (L), is given 
by 

This number is smaller than the actual number of possible configurations for a given 
n(&) ,  since it does not include, for instance, the apparent possibility that two spins 
turned down may have a common forbidden site, which cannot be occupied by a third 
spin turned down. Thus C ( n  (4)) is an element of the lower bound of the ground state 
degeneracy 

[N/rl 

n ( l ) = l  
PI = c C(n(1)). (20) 

In order to calculate the corresponding lower bound for the residual entropy, in the 
thermodynamic limit, we look for the maximum C(n(1)).  It turns out to be C ( n ( 1 ) )  
for the smallest of n (4) that cause violation of the inequality C ( n  (1)) < C ( n  (1) + 1). 
One can verify that, for large N, n (1) = [N/(p + l)] satisfies this requirement. The 
corresponding degeneracy element can be written in the form 

where 
k 

p =  Z j C l .  
j = l  

m = [N/(P + 1 ) 1 9  

Hence we find the entropy lower bound 

V I =  lim - l n ~ ( m ) )  1 
~ + o o  ( N  

1 m - l  

~ + m  N i=o 
= lim { - (ln(N -pi)-ln(i + l))}, 
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which is equivalent to 

1 "  
u1 = lim { lo (ln(N - p t )  -In([ + 1)) dt 

N-m 

so that, after a few steps of a simple calculation, we finally obtain 

m = ( l /p )  ln(p + 1). (25) 

From this formula we can infer that all Ising antiferromagnets described by (l), 
in the appropriate critical fields (9), have non-zero residual entropies, which might tend 
to zero when the range of interaction tends to infinity. Indeed, p is of order of k ,  
and according to (25) m vanishes when p + CO. This would mean that residual entropies 
vanish as well, if their upper bounds also tend to zero when the range of interaction 
tends to infinity. We shall demonstrate that the latter condition is satisfied. 

Let us now assume that, for arbitrary n(J)  in the interval (7), every spin turned 
down forbids exactly r lattice sites to be occupied by any other spin turned down. 
Furthermore, we assume that the diminished forbidden spheres (r < p )  do not overlap. 
As r is the lowest number of f introduced above, the assumptions imply a strong 
tendency of the spins turned down to approach each other at the smallest allowed 
distances. This brings about a great number of possible configurations, and results in 
an overestimation of the ground state degeneracy. The latter, for a given n ( J ) ,  can 
be evaluated in the same way as in the case f = p .  Repeating all neccesary steps we 
obtain an upper bound for the residual entropy 

uU = ( l / r )  ln(r + 1) .  (26) 

As we have already observed, the precise value of r depends on the lattice geometry. 
In the case of a one-dimensional lattice r = k + 1. However, in the general case it is 
evident that r cannot be smaller than the range of the antiferromagnetic interaction 
k ,  since r is in fact related to the smallest distance between two non-interacting spins 
in the lattice. Thus, when the range of interaction tends to infinity, r also becomes 
infinite, and, according to (26), the upper bound of the residual entropy vanishes. 
This vindicates the conclusion that the residual entropy itself vanishes when k + 00. 

4. Discussion 

The first result we have obtained in this paper is an exact formula for the residual 
entropy of the antiferromagnetic Ising chain with many-neighboured interaction in 
the maximum critical field (see equations (12), (16) and (18)). This result confirmed 
an interesting conceptual fact, that consists in the vanishing of the residual entropy 
when the range of interaction k tends to infinity. This fact is interesting in relation 
to t'he theoretical foundations of the third law of thermodynamics, and may be useful 
in the study of the frustration phenomena (Toulouse 1977), since an Ising antiferromag- 
net in the critical field is a fully frustrated system. It should also be observed that 
calculation of the residual entropy as the zero-temperature limit of the first derivative 
of the corresponding free energy for k > 2 is practically futile, for such a calculation 
requires analysis of an eigenvalue problem of order 2k (Dobson 1969). In that respect 
our first result has its own virtue. It corroborates the statement of Aizenmann and 
Lieb (1981), that the zero-temperature entropy should be computable by a direct 
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counting of the ground state configurations, although the calculation is not usually 
trivial. 

The direct calculation of the residual entropy in the case of two- and three- 
dimensional Isihg antiferromagnets is almost insuperable. Thus, we searched for the 
entropy bounds, in order to extend results established for one-dimensional systems. 
The obtained lower and upper entropy bound, equations (25) and (26) respectively, 
substantiate the statement that residual entropy of an arbitrary Ising antiferromagnet, 
in the maximum critical field, vanishes when the range of interaction tends to infinity. 

Here one can raise the question as to whether the entropy bounds may serve the 
purpose of estimating the residual entropy of a given Ising antiferromagnet. Since 
the established bounds (25) and (26) are quite general, we shall look at the one- 
dimensional Ising antiferromagnets first. Comparison of the exact values for the 
residual entropies, obtained from numerical solutions of equation (16), and the corres- 
ponding boundary values reveals that the bounds impose acceptable intervals for the 
actual values (see table 1). It can be also noticed that the upper bound is always 
worse than the lower one. For instance, when k = 8 the deviation of the lower bound 
from the exact value is about 12%, whereas the deviation of the upper bound is more 
than 32%. However, a simple argument can be brought forward so as to establish a 
better formula for the entropy upper bound. 

Table 1. The residual entropy of the one-dimensional Ising antiferromagnet in the critical 
field (12), with an interaction of range k .  ul, u,,,,~, a: and U, are calculated according 
to formulae (25), (18), (29) and (26), respectively. 

0.4621 
0.3584 
0.297 1 
0.2558 
0.2259 
0.2030 
0.1848 
0.1700 

0.4812 
0.3822 
0.3223 
0.2812 
0.2509 
0.2275 
0.2087 
0.1932 

0.5011 
0.4024 
0.3403 
0.2971 
0.2649 
0.2398 
0.2196 
0.2030 

0.5493 
0.4621 
0.4024 
0.3584 
0.3243 
0.2971 
0.2747 
0.2558 

The ground state degeneracy can be considered as a sum of elements which are 
certain functions of n ( 4 ) .  For the residual entropy, in the thermodynamic limit, it is 
the largest of these elements that matters the most. Such an element is defined by a 
particular value of n (J), which, on the other hand, defines a particular f ,  i.e. a definite 
number of forbidden lattice sites per spin turned down. We shall argue that this 
number should satisfy the inequality 

f >  (3P + 11/49 
where p is given by (22). To this end let us define the quantity 

(i)) = (pn (J) - fn  ( W n  = P - f  (28) 
which measures the overlapping of the forbidden spheres. For two spheres the 
maximum of w would be w(2) = ( p  - 1)/4, since two spheres can have in common at 
most (p - 1)/2 forbidden lattice sites. When there are many spheres, w(n(&))  should 
not be larger than ( p  - 1)/4 (or f smaller than (3p + 1)/4), since other values of w(n (J)) 
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imply appreciable clustering of spheres, which has smaller possibilities of producing 
a large number of configurations. Thus, values of f that may bring about large 
degeneracy should satisfy (26). If we now assume that every spin turned down is 
surrounded by a sphere that contains f = (3p + 1)/4 forbidden sites, and if we assume 
that these new spheres do not overlap at all, we will allow for an overestimation of 
the ground state degeneracy. The corresponding residual entropy can be calculated 
in the same way as m and vu in the preceding section. The final result is 

ah = [4/(3p + l)] In { [ ( 3 p  + 1)/4]+ 1). (29) 
In table 1 we present values of U; calculated for the one-dimensional Ising 

antiferromagnets. One can readily notice that formula (29) provides a fairly acceptable 
upper estimate of the residual entropies. Thus, on the whole, table 1 makes us confident 
to use (25) and (29) for estimation of the residual entropy in cases when its exact 
value is not known. In table 2 we present the corresponding estimates in the case of 
the square Ising antiferromagnet. We can see that for k = 1 the lower and upper 
estimates, in perfect agreement with the classic prediction of Brooks and Domb (195 l ) ,  
retain respectively 51.7% and 58% of the entropy maximum (In 2). In table 3 we 
give, for the sake of completeness, similar estimates for several standard two- 
dimensional and three-dimensional lattices. The importance of these estimates, beside 
the physical insights they may provide, lies in the fact that they cannot easily be 
obtained by the series expansion methods about zero temperature (see, e.g., Domb 
1974). The latter are based on counting the configurations that deviate from a perfect 
order, and this does not exist in the critical field. 

Table 2. The lower ((TI) and upper (U:) bounds of residual entropy of the square Ising 
antiferromagnet in the maximum critical field (9), with an interaction of range k .  

1 0.3584 0.4024 
2 0.2558 0.2971 
3 0.2030 0.2398 
4 0.1472 0.1771 

Table 3. The lower and upper bounds of the residual entropies of the k ing  antiferromagnets 
situated on standard lattices ( k  = 1). 

Lattice vi a: 

Triangular 0.2971 0.3403 
KagomC 0.3584 0.4024 
Honeycomb 0.4024 0.4452 
Simple cubic 0.2971 0.3403 
Body-centred cubic 0.2558 0.2971 
Face-centred cubic 0.2030 0.2398 
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